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Abstract: Radial basis networks (RBN) were applied to link molecular descriptor and boiling points of 168 hydroxyl 

compounds. The total database was randomly divided into a training set(134), a validation set(17) and a testing set(17). Each 

compound in the lowest energy conformation was numerically characterized with E-dragon software. Then 8 molecular 

descriptors were selected to develop the RBN model. Simulated with the final optimum RBN model [8-35(64)-1], the root mean 

square errors (RMSE) for the training, the validation and the testing set were 5.55, 4.28, and 5.33, and the correlation coefficients 

R=0.994(training), 0.994(validation), 0.993(testing). The final RBN model was compared with the multiple linear regression 

approach and showed more satisfactory results. 
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1. Introduction 

The normal boiling point (NBP) can be defined as the 

temperature at which a pure saturated liquid has a vapor 

pressure of 760 mm Hg. NBP can be used to estimate many 

key physical and physicochemical properties such as critical 

temperature, enthalpy of vaporization and vapor pressure, etc 

[1-2]. So having an accurate knowledge of the NBP is very 

important for the chemical industry. The direct measurement 

of normal boiling point of organic compounds may be costly, 

laborious, and even dangerous to the researcher or the 

environment if the compound has some hazardous properties. 

Therefore, it is essential to develop reliable methods for 

estimating the NBP of the compounds. 

The NBP of compounds is an indicator of the strength of 

the intermolecular forces which bind them together. The 

stronger the intermolecular forces, the more tightly packed 

the atoms and, therefore, the higher NBP. NBP is directly 

correlated to the chemical structure of a molecule. The 

classical approach based on chemical structures to predict 

NBP is the group contribution methods [3-4], where each 

molecule is considered as made of fundamental groups, each 

one giving a constant increment to the value of the NBP for a 

compound [5-6]. The method is applicable only to the 

compounds for which all group contributions have been 

established. Another well-known solution is quantitative 

structure-property relationships (QSPR) approach [7-9]. In 

this approach, a QSPR model is introduced by developing a 

correlation between the NBP and a variety of molecular 

features. 

In recent years, neural networks have become an important 

modeling technique in the field of QSPR. The advantage of 

them is in their inherent ability to incorporate nonlinear and 

cross-product terms into the model. Besides, they do not 

require knowledge of the mathematical function to be known 

in advance. Q. F. Li et al. [10] used radial basis function 

neural networks to link the molecular structures with the 

boiling points of 106 compounds. The final 10-parameters 

model showed satisfactory prediction results. Simulated with 

the final model, the predictive correlation for the training, the 

validation, and the testing set were 0.998, 0.998 and 0.991, 

respectively. Gharageizi et al. [11] optimized a three-layer 

feed forward artificial neural network (ANN) with 44 

molecular descriptors to predict the NBP of a very large 

database. The final model gave R
2
=0.943 with an RMS error 

of 22°C for a training set of 14216 compounds, an RMS error 

of 21°C for a validation set of 1776 compounds and an RMS 

error of 21°C for a test set of 1776 compounds. The results 

indicated the ANN would be a promising strategy to predict 

the NBP of pure chemicals. 
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In this paper, the QSPR method was applied to predict the 

boiling points of 168 hydroxyl compounds at standard 

pressure using radial basis networks. A large number of 

molecular descriptors were calculated from the chemical 

structure and were used to describe the structure of hydroxyl 

compounds. Some of these descriptors were selected and 

quantitatively related to the boiling points of 168 hydroxyl 

compounds by using radial basis networks. The results 

obtained were validated and tested. 

2. Database and Mathematical Methods 

2.1. Database 

Experimental data set of the normal boiling points of 168 

compounds containing the group “-OH” are taken from 

literature [12], which is a handbook of boiling points drawn 

from the primary chemical literature. From these 168 

hydroxyl compounds, 134 compounds were randomly chosen 

as the training set to generate the structure of the neural 

networks, 17 for validation of the generated neural networks 

set and 17 for testing. 

2.2. Determination of Molecular Descriptors 

Molecular descriptors are numerical characteristics 

associated to the chemical structures of compounds [13]. The 

optimized molecular structures are a requisite for the 

calculation of molecular descriptors. In this paper, the 

molecular structure of each compound was sketched via the 

drawing capabilities of Materials studio. Then these chemical 

structures were initially energy-minimized with compass 

molecular mechanics method and subsequently subjected to 

AM1 semi-empirical quantum chemical method for final 

geometry optimization. The optimized molecular structures 

were loaded into E-dragon software, which can calculate 

molecular descriptors free of charge [14-15]. E-dragon 

software is capable of calculating 1666 descriptors from 22 

diverse blocks: Constitutional descriptors, Topological 

descriptors, Walk and path counts, Connectivity indices, 

Information indices, 2D-autocorrelation indices, Edge 

adjacency indices, Burden eigenvalue descriptors, 

Topological charge indices, Eigenvalue-based indices, Randic 

molecular profiles, Geometrical descriptors, RDF descriptors, 

3D-MoRSE descriptors, WHIM descriptors, GETAWAY 

descriptors, Functional groups, Atom-centered fragments, 

Charge descriptors, and Molecular properties. 

Among the huge number of the calculated molecular 

descriptors, a pre-selection was performed to remove some 

information-poor descriptors by a series of objective methods. 

Descriptors matching any of the following criteria were 

eliminated: (1) descriptors were not available for all structures; 

(2) the values of descriptors were constant for all structures; (3) 

descriptors with the R
2
 value of the one-parameter correlations 

were lower than 0.1. Besides, among the collinear descriptors, 

whose pair-correlation coefficient value was greater than 0.98, 

the one having the highest R
2
 value with the boiling points was 

retained while the rest were discarded. 

The next step was to generate an optimal subset of 

descriptors for the QSPR model. Sequential forward selection 

was used for descriptors selection. All the remaining 

descriptors were listed in decreasing order according to the 

one-parameter R
2
. Starting from the top descriptor, other 

descriptors were added sequentially. At each step, the 

probability of the F-value was evaluated to determine the 

descriptor entry or removal. If the probability of the F-value 

was below 0.05, the variable was entered, and if the 

probability of F-value was above 0.10, the variable was 

removed. The process was repeated until the average absolute 

relative deviation (AARD) was less than a threshold value 1%. 

The mathematical definition of AARD is presented as 

follows: 

( ) ( )100
%

( )

N

i

pred i exp i
AARD

N exp i

−
= ∑          (1) 

where pred and exp stand for the predicted value by model and 

its corresponding experimental value, respectively. 

2.3. RBN Model Development 

The selected molecular descriptors were introduced to the 

radial basis network (RBN) for the final model development. 

The RBN model is a three layered network where the 

connections (the hidden layer) are feed-forward between the 

input and the output layers. The input layer consists of the 

selected descriptors and the values of the output layer are the 

target values. The hidden layer neurons have a Gaussian 

activation function that determines the excitation level of the 

neurons depending on how close the input data is located 

with respect to the neuron’s center of the activation functions. 

In this study, the RBN was designed with an artificial neural 

network toolbox in MATLAB. In MATLAB subroutine, the 

generation of the RBN model involved the determination of 

the optimum number of neurons n in the hidden layer and the 

appropriate Gaussian function parameter spread capable of 

predicting the target with minimum error. The number of 

neurons n of radial basis functions greatly influences the 

performance of the radial basis neural networks. If the number 

is too low, the networks may not calculate a proper estimation 

of the data. On the other hand, if too many hidden layer units 

are used, the networks tend to overfit the training data. The 

larger that spread is the smoother the function approximation 

will be. Too large a spread means a lot of neurons will be 

required to fit a fast changing function. Too small a spread 

means many neurons will be required to fit a smooth function, 

and the networks may not generalize well. The generalized 

network configuration could be represented by [P-nspread-a2], 

where P was the input and a2 was the target. The optimal 

values of n and spread were obtained by minimization of the 

objective function. The root mean square error (RMSE) 

between the outputs of RBN and the experimental data was set 

as the objective function. The mathematical definition of 

RMSE is presented as follows: 
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where pred and exp stand for the predicted value by model and 

its corresponding experimental value in literature, respectively. 

The problem of “over-fitting” may occur during neural 

networks training. Over-fitting means that the networks have 

memorized the training examples, but have not learned to 

generalize to new situations. In this situation, the error of the 

training set is driven to a very small value, but when new data 

is presented to the networks the error is large. To prevent 

over-fitting, the RMSE value of the training set and the 

validation set were monitored simultaneously during the 

training phase. If the RMSE value was still decreasing on the 

training set but began to increase on the validation set, the 

RBN model began to over-fit. The optimum values of n and 

spread were selected at the minimum RMSE in the validation 

set. Such a simple method was found sufficient for the 

considered problem. The test set was not used in the model 

development, but was applied to assess the predictive 

capability of the model. 

3. Results and Discussions 

The selected descriptors as well as their definitions and 

their blocks are shown in Table 1. Eight descriptors belong to 

6 descriptor blocks [16]. The Constitutional descriptor here 

represents information related to the electronic and 

topological state of the atom in the molecule [17]. The 

Topological descriptors depict the topological information in 

the molecule from different aspects [16]. The GETAWAY 

descriptor (GEometry, Topology, and Atom-Weights 

AssemblY) match 3D-molecular geometry provided by the 

molecular influence matrix and atom relatedness by molecular 

topology, with chemical information by using atomic 

weightings [18-19]. WHIM descriptors are calculated from (x, 

y, z)-coordinates of a molecule with the atom charge 

distribution related weighting scheme in a straightforward 

manner [20]. The Molecular property descriptor here 

digitizes the hydrophilic properties of the molecules caused 

by the group “-OH”[16]. The 3D-MoRSE descriptor reflects 

3D molecular structure based on electron diffraction [21]. 

Table 1. Descriptors of the RBN model. 

Descriptors Definitions Blocks 

Ss 
Sum of Kier-Hall electrotopological 

states 
Constitutional 

GNar Narumi geometric topological index Topological 

PW4 Path/walk 4 - Randic shape index Topological 

R1p 
R autocorrelation of lag 1/weighted by 

atomic polarizabilities 
GETAWAY 

E1s 

1st component accessibility directional 

WHIM index / weighted by atomic 

electrotopological states 

WHIM 

MAXDN 
Maximal electrotopological negative 

variation 
Topological 

Hy Hydrophilic factor 
Molecular 

properties 

Mor13u 3D-MoRSE - signal 13/unweighted 3D-MoRSE 

The best RBN model generated with the hidden neurons 

n=35 and the Gaussian function parameter spread=64. The 

optimum networks configuration can be represented by 

[8-35[64]-1]. The RMSE for the training set, validation set and 

testing set are 5.55, 4.28, and 5.33, respectively, indicating the 

accuracy of the RBN model. Table 2 reports the experimental 

and predicted data for each compound, as well as the relative 

error (A%D). By analyzing the relative errors in Table 2, the 

large portion of the investigated NBP values were 

successfully predicted. 90.5% of the investigated data were 

predicted within a promising range of 0-2%. 7.7% of 

investigated values were predicted within the range of 2-3%. 

Only 3 compounds (1.8%) of the predicted values have the 

relative error greater than 3%. The results indicate that the 

RBN model has an acceptable predictive capability. 

The scatter plots of the predicted boiling point versus the 

experimental data, which could provide a prompt indication of 

the accuracy of the RBN model, are reported in Fig. 1. With 

the RBN model, the performance of prediction for the training 

set is NBPExp=(5.19±4.25)+(0.990±0.009)×NBPPre (R=0.994, 

n=134), for the validation set is 

NBPExp=(1.49±2.79)+(0.995±0.029)×NBPPre (R=0.994, 

n=17), and for the testing set is 

NBPExp=(-5.15±13.48)+(1.008±0.030)×NBPPre (R=0.993, 

n=17). 
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Figure 1. Plots of experimental vs. calculated boiling points for the training 

(a), validation (b), and test set(c). 

A multiple linear regression approach was also employed to 

describe the relation between NBP and their molecular 

descriptors. By using these descriptors selected above, the 

best multiple linear regression function can be obtained as 

follows: 

NBPPred=-132.688(±12.687)+8.958(±0.327)×(Ss) 

+103.693(±9.461)×(GNar)+84.688(±29.490)×(PW4) 

-62.163(±12.337)×(R1p)+49.552(±7.333)×(E1s) 

+12.374(±1.116)×(Hy)-11.064(±3.762)×(MAXDN) 

-6.308(±2.544)×(Mor13u)             (3) 

With the multiple linear regression model, the performance 

of prediction for the training set is 

NBPExp=(7.24±5.63)+(0.984±0.012)×NBPPre(R=0.990, 

n=134), and for the test set (combined with the validation set) 

is NBPExp=(43.31±8.05)+(0.993±0.018)×NBPPre (R=0.993, 

n=34). Compared with the multiple linear regression method, 

the calculated slope and intercept of the RBN model are more 

close to the ideal values of 1 and 0, respectively. It is clear that 

RBN model can give more satisfactory predicted results. 

Table 2. Experimental and predicted boiling points for the 168 compounds. 

No. Compounds  
Exp. 

NBP 

Pred. 

NBP 
A%D 

1 Methanol 337.75 337.73 0.01 

2 Ethanol* 351.15 346.87 1.22 

3 Propanol** 370.25 376.24 1.62 

4 2-propanol 355.55 353.60 0.55 

5 Butanol 390.75 396.03 1.35 

6 2-methyl-1-propanol 381.25 383.49 0.59 

7 2-butanol 372.65 373.94 0.35 

8 2-methyl-2-propanol 355.55 359.87 1.22 

9 Pentanol* 411.15 410.91 0.06 

10 2-pentanol 392.45 385.69 1.72 

11 3-pentanol 389.35 395.01 1.45 

12 3-methyl-2-butanol 386.05 388.58 0.66 

No. Compounds  
Exp. 

NBP 

Pred. 

NBP 
A%D 

13 2-methyl-2-butanol 375.45 378.60 0.84 

14 3-methyl-1-butanol** 404.15 399.31 1.20 

15 2-methyl-1-butanol 401.15 405.73 1.14 

16 Hexanol 430.75 432.98 0.52 

17 3-isopropylphenol 501.15 498.95 0.44 

18 4-pentylphenol 523.65 529.63 1.14 

19 4-tert-amylphenol 539.15 532.93 1.15 

20 Thymol* 506.65 508.71 0.41 

21 phenol 455.15 457.82 0.59 

22 2-phenylphenol 548.15 549.96 0.33 

23 2-naphthol 558.65 556.82 0.33 

24 4-methyl-1,2-dihydroxybenzene 525.15 540.15 2.86 

25 1,2-benzenediol 519.05 520.35 0.25 

26 1,3-benzenediol 553.65 538.25 2.78 

27 4-hydroxydiphenylmethane 595.15 594.28 0.15 

28 2-tert-butylhydroquinone 558.15 553.63 0.81 

29 3-methyl-1-pentano** 426.15 416.67 2.22 

30 2-ethyl-1-butanol 420.15 420.38 0.05 

31 2-methyl-1-pentanol 422.15 427.25 1.21 

32 4-methyl-1-pentanol* 425.05 419.49 1.31 

33 3,3-dimethyl-1-butanol 417.65 403.26 3.45 

34 2,3-dimethyl-1-butanol 416.15 412.13 0.97 

35 2-hexanol 413.15 405.73 1.80 

36 2,2-dimethyl-1-butanol 409.65 405.15 1.10 

37 3-hexanol* 408.15 414.18 1.48 

38 4-methyl-2-pentanol 404.75 402.05 0.67 

39 2-methyl-3-pentanol 399.65 407.72 2.02 

40 3-methyl-3-pentanol 395.55 396.21 0.17 

41 2-methyl-2-pentanol 394.25 395.75 0.38 

42 3-methyl-2-pentanol** 407.45 405.84 0.40 

43 3,3-dimethyl-2-butanol 393.55 390.69 0.73 

44 2,3-dimethyl-2-butanol 391.55 389.92 0.42 

45 Heptanol 449.55 450.56 0.22 

46 4-methyl-1-hexanol 446.15 440.64 1.24 

47 5-methyl-1-hexanol 443.15 444.62 0.33 

48 3-methyl-1-hexanol 442.15 441.19 0.22 

49 2-methyl-1-hexanol* 437.15 443.16 1.37 

50 2-heptanol 432.15 430.66 0.34 

51 2-methyl-2-hexanol 416.15 417.20 0.25 

52 5-methyl-2-hexanol 424.15 417.58 1.55 

53 2,4-dimethyl-1-pentanol** 432.15 428.10 0.94 

54 2,3-dimethyl-2-pentanol 412.85 413.94 0.26 

55 2,4-dimethyl-2-pentanol 406.25 404.97 0.32 

56 2,3,3-trimethyl-2-butanol 404.15 396.67 1.85 

57 3-heptanol** 430.15 433.91 0.87 

58 3-methyl-3-hexanol 416.15 418.72 0.62 

59 5-methyl-3-hexanol 421.15 426.31 1.23 

60 2-methyl-3-hexanol* 416.15 417.85 0.41 

61 3-ethyl-3-pentanol 415.15 421.89 1.62 

62 2,2-dimethyl-3-pentanol 408.15 412.11 0.97 

63 2,3-dimethyl-3-pentanol 412.85 409.44 0.83 

64 2,4-dimethyl-3-pentanol* 411.85 415.13 0.80 

65 Octanol 468.45 470.31 0.40 

66 4-methyl-1-heptanol 461.15 455.69 1.18 

67 6-methyl-1-heptanol 461.75 460.45 0.28 

68 2,5-dimethyl-1-hexanol 452.65 450.38 0.50 

69 4-heptanol** 429.15 430.04 0.21 

70 2-methyl-2-heptanol 429.15 439.33 2.37 
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No. Compounds  
Exp. 

NBP 

Pred. 

NBP 
A%D 

71 3-methyl-2-heptanol 439.25 442.49 0.74 

72 5-methyl-2-heptanol 443.15 446.88 0.84 

73 2,4,4-trimethyl-1-pentanol* 441.65 443.21 0.35 

74 2,3-dimethyl-2-hexanol 433.15 434.60 0.33 

75 2,5-dimethyl-2-hexanol** 427.65 431.01 0.79 

76 2-methyl-3-ethyl-2-pentanol 429.15 439.40 2.39 

77 2,3,4-trimethyl-2-pentanol 420.65 419.58 0.25 

78 2-octanol** 453.15 449.87 0.72 

79 3-octanol 444.15 448.89 1.07 

80 3,4-dimethyl-2-hexanol* 438.65 430.42 1.88 

81 2-methyl-3-heptanol 440.65 435.63 1.14 

82 3-methyl-3-heptanol 436.15 437.85 0.39 

83 4-methyl-3-heptanol 443.15 445.37 0.50 

84 5-methyl-3-heptanol* 445.15 439.99 1.16 

85 6-methyl-3-heptanol** 447.15 439.60 1.69 

86 2-methyl-3-ethyl-3-pentanol 433.15 431.62 0.35 

87 2,2,4-trimethyl-3-pentanol 423.65 418.49 1.22 

88 2,3,4-trimethyl-3-pentanol 429.65 416.38 3.09 

89 4-octanol 449.45 446.52 0.65 

90 2-methyl-4-heptanol 437.15 443.20 1.38 

91 3-methyl-4-heptanol 435.15 442.10 1.60 

92 4-methyl-4-heptanol** 434.15 439.34 1.20 

93 2,2-diethyl-1-pentanol 465.15 453.99 2.40 

94 3,5,5-trimethyl-1-hexanol 466.15 459.93 1.33 

95 Nonanol* 486.45 484.90 0.32 

96 2-nonanol 466.65 467.91 0.27 

97 2-methyl-2-octanol 451.15 455.46 0.96 

98 2,6-dimethyl-2-heptanol 446.15 450.87 1.06 

99 3-nonanol** 468.15 465.19 0.63 

100 2,2,3-trimethyl-3-hexanol 429.15 443.09 3.25 

101 4-nonanol 465.65 462.97 0.58 

102 5-nonanol* 466.15 459.47 1.43 

103 2,6-dimethyl-4-heptanol 447.65 450.94 0.73 

104 3,5-dimethyl-4-heptanol 460.15 456.56 0.78 

105 7-methyl-1-octanol 479.15 476.32 0.59 

106 4-ethyl-4-heptanol** 455.15 452.36 0.61 

107 3,6-dimethyl-3-heptanol 446.15 451.87 1.28 

108 2,6-dimethyl-3-heptanol* 448.15 451.22 0.69 

109 Decanol 504.25 496.82 1.47 

110 3,7-dimethyl-1-octanol 485.65 484.18 0.30 

111 2-decanol 484.15 478.95 1.07 

112 3-ethyl-3-octanol* 472.15 468.50 0.77 

113 3-ethyl-2-methyl-3-heptanol 466.15 469.73 0.77 

114 4-decanol 483.65 479.26 0.91 

115 2,6-dimethyl-4-octanol 468.15 470.90 0.59 

116 2,7-dimethyl-3-octanol 466.65 466.36 0.06 

117 3,6-dimethyl-3-octanol** 475.35 472.75 0.55 

118 Undecanol 518.15 525.37 1.39 

119 2-ethyl-1-hexanol 457.15 451.49 1.24 

120 2,2-dimethyl-1- propanol 386.65 386.75 0.03 

121 2,6,8-trimethyl-4-nonanol 498.35 498.23 0.02 

122 triphenylmethanol 653.15 653.19 0.01 

123 benzyl alcohol 478.45 483.06 0.96 

124 1-phenyl-1-propanol 492.15 496.16 0.81 

125 2-phenyl-2-propanol 475.15 479.72 0.96 

126 2,5-dimethylcyclohexanol 452.15 457.23 1.12 

127 2,6-dimethylcyclohexanol 445.15 446.02 0.20 

128 3,4-dimethylcyclohexanol 462.15 457.72 0.96 

No. Compounds  
Exp. 

NBP 

Pred. 

NBP 
A%D 

129 4,4-dimethylcyclohexanol 459.15 453.98 1.13 

130 cyclohexanemethanol 455.15 457.59 0.54 

131 2-ethyl-1,3-hexanediol 517.15 504.82 2.38 

132 2,5-dimethyl-2,5-hexanediol 487.15 493.51 1.31 

133 1,3-butanediol 480.65 475.11 1.15 

134 1,4-butanediol 501.15 495.33 1.16 

135 2,3-butanediol 455.65 457.60 0.43 

136 1,6-hexanediol 523.15 526.38 0.62 

137 2-methyl-1,3-pentanediol* 493.45 493.60 0.03 

138 2-methyl-2,4-pentanediol** 471.15 459.94 2.38 

139 1,3-propanediol 487.15 475.51 2.39 

140 1,2-pentanediol 484.95 490.40 1.12 

141 1,5-pentanediol 512.55 514.49 0.38 

142 pinacol 447.55 457.19 2.15 

143 1,7-heptanediol 535.15 536.83 0.31 

144 2-ethylphenol 477.65 476.40 0.26 

145 3-ethylphenol 487.15 490.15 0.62 

146 4-ethylphenol 492.15 490.86 0.26 

147 2,3-dimethylphenol 491.15 480.32 2.21 

148 2,4-dimethylphenol* 483.15 480.89 0.47 

149 3,4-dimethylphenol 498.15 490.62 1.51 

150 2,5-dimethylphenol** 485.15 489.46 0.89 

151 2,6-dimethylphenol 476.15 471.99 0.87 

152 3,5-dimethylphenol 492.65 497.04 0.89 

153 2,6-dibutylphenol 526.15 527.26 0.21 

154 2-butyl-4-methylphenol 510.15 508.00 0.42 

155 2-tert-butylphenol 497.15 497.48 0.07 

156 3-tert-butylphenol 513.15 509.70 0.67 

157 4-tert-butylphenol 509.65 512.85 0.63 

158 2,3,5-trimethylphenol 506.15 500.29 1.16 

159 2,4,6-trimethylphenol 494.15 480.49 2.76 

160 2-methylphenol 463.95 470.33 1.38 

161 3-methylphenol 475.95 482.86 1.45 

162 4-methylphenol 475.15 478.45 0.69 

163 5-isopropyl-2-methylphenol 511.15 519.42 1.62 

164 3-propylphenol 501.15 499.61 0.31 

165 4-hexyl-1,3-benzenediol 607.15 603.64 0.58 

166 2-methyl-1,3-dihydroxybenzene 537.15 536.52 0.12 

167 4-tert-butylcatechol 558.15 567.29 1.64 

168 2-hydroxydiphenylmethane** 585.15 590.33 0.89 

( ) ( )
% 100

( )

pred i exp i
A D

exp i

−

= × ,*: compounds in the validation set, 

**: compounds in the testing set, the other compounds belong to the training 

set. 

4. Conclusion 

In this paper, a radial basis network was developed to 

predict the normal boiling point of hydroxyl compound. The 

structure features of all compounds in the dataset were 

numerically characterized by a huge number of molecular 

descriptors. These descriptors obtained were analyzed 

carefully and finally eight important descriptors remained by a 

series of methods. The results revealed that 8 molecular 

descriptors can be used to construct the RBN model for the 

prediction of the boiling points. The three-layer radial basis 

network model can be represented by [8-35[64]-1]. With the 
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same 8 descriptors, a multiple linear regression approach was 

also applied and was compared with the RBN model. The 

results showed that the RBN model could provide more 

accurate values of the predicted boiling point. In summary, the 

results of the current study indicated that radial basis networks 

would be a promising strategy for QSPR modeling. 
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